Dimeric Platinum Complexes with Trichlorostannato Ligands. Relationship between Pt-Sn Bond Lengths and ¹ J(¹⁹⁵Pt, ¹¹⁹Sn).

A. ALBINATI, R. NAEGELI

Istituto di Chimica Farmaceutica, Universitd di Milano, 42 Viale Abruzzi, I-20131 Milan, Italy

K. H. A. OSTOJA STARZEWSKI, P. S. PREGOSIN and H. RUEGGER

Laboratorium für Anorganische Chemie, ETH-Zürich, Universitätstrasse 6, CH-8092 Zürich, Switzerland

Received November 26,1982

The interest in trichlorostannate complexes of platinum(H) as intermediates in the homogeneous hydrogenation and hydroformylation of organic substrates is growing [I]. As part of our program in the α $[2-\tilde{6}]$ we have studied the spin-spin coupling etween 119 Sn and 195 Pt and found that this parameter can range from 5780-29242 Hz [7]. Since such large changes in one-bound platinum ligand coupling constants are sometimes indicative of changes in metal-ligand bond lengths [8, 91, we have begun parallel studies using X-ray diffraction and NMR methods and report here 1) an unusual structure for the dimeric complex sym-trans- $[Pt(SnCl₃)(\mu-Cl)$ $(PEt₃)$]₂ and 2) a correlation of the Pt-Sn separation with $1j(^{195}Pt, 119Sn)$.

Reaction of sym-trans-[PtCl(μ -Cl)L] ₂, L = PEt₃, $P(p\text{-}CH_3C_6H_4)_3$, AsEt₃, with two equivalents of SnCl₂ affords the dimers $[Pt(SnCl₃)(\mu-Cl)L]_2$, (I), in which the $SnCl₃$ groups are terminal. In solution the ¹¹⁹Sn NMR signals clearly reveal only a single ¹J $(^{195}Pt, ^{119}Sn)$ coupling constant (there would be two such interactions if the tin were bridging). The values $1J(^{195}Pt$, $119Sn$) are significantly larger than previously reported $[7]$ and this may be related to the small *trans* influence of the bridging halogen. There seems to be a small *cis* effect in that $\frac{1}{1}J(\frac{195}{P}p_t, \frac{119}{P}Sn)$ for $L = AsEt_3$ at 33691 Hz, is slightly smaller than that for $L = PEt_3$, 35309 Hz or $P(p-CH_3C_6H_4)_3$, 35278 Hz.

The structure for the $PEt₃$ complex was determined by X-ray diffraction and is shown in Fig. 1. The molecule consists of discrete chlorine bridged Pt dimers. Each Pt atom is bonded to $SnCl₃$ and $PEt₃$ groups which are *cis* with respect to each other, but the entire molecule has the *sym-trans* geometry. The coordination about the platinum is distorted square planar. Interstingly, the molecule is of the 'hinged type, in contrast to the planar, *sym-trans-[R-Cl(p-* $CI(PPr₃)$ ₂ [10]. We note that the separation between the two platinum atoms at 3.035(2) A is

Fig. 1. Structure of PEt₃ Complex.

reduced from the 3.54 A value observed for planar dimers [8, 11], and in this connection that $2J(^{195}Pt,$ 195 Pt) is 531 Hz, increased from the 200 Hz value found in $[PtCl(\mu\text{-}Cl)(PPr_3)]_2$ [11].

Of special interest are the $Pt-Sn$ bond distances 2.478(3) and 2.487(3) A, as these are rather short. The oxime complexe $[PtCl(SnCl₃) (PEt₃) (PhC(NH₂)]$ =NOH)] (II) (tin *trans* to chlorine) shows a Pt-Sn ength of $2.501(1)$ $\lambda \cdot [12]$; however, more represenative are $[Pt(SnCl_2),]^{3-}$ (III) 2.553 Å (axial) 2.572 A (equatorial) [13], $[Pd_2Cl(SnCl_3)(dpm)_2]$ 2.585 A [14], $[Pt(SnCl₃)₃(AsMe₃)₂]²⁻, (IV) 2.602 A [15],$ $[PtCl(SnCl₃)(DIOP)]$, (V) , 2.598 Å [16] and $[Pt (SnCl₃)₂(P(OPh)₃)₂$], (VI), 2.601 Å [17]. Although complexes (III) and (IV) are fivecoordinate and not directly comparable to the square planar compounds (I), (II) , (V) and (VI) , the Pt-Sn distance is generally longer when the *trans* ligand has a substantial *trans* influence. It would seem then that the Pt-Sn bond length shows a dependence on the remaining ligands similar to that observed for Pt-P bond distances [8].

Table II shows coupling constant data for some $SnCl₃⁻$ complexes for which solid state structural information is at hand. Clearly, where the Pt-Sn bond istance is relatively short, 11^{195} Pt, 119 Sn) annears at the upper end of its range. Interestingly, the Pd-Sn separation of 2.473 Å, found in the $[PdCl₃(Sn Cl₃$] anion fits well with the observed coupling constant, 34,600 Hz, for the platinum analog [18]. To our knowledge, this is the first example of a metal-metal separation which correlates with its corresponding spin-spin coupling constant. A closer inspection of the data in Table II reveals that the $PrC_{12}(SnCl₃)₂²⁻$ anion does not quantitatively fit well with the remaining molecules. This is not disturbing since it does show a large 1 J(195 Pt, 119 Sn) value and a short Pt-Sn bond length and this qualitative trend is the most important. Further there is no theoretical reason to expect a linear relationship between these two observables; however, the qualitative trend is in keeping with the now accepted idea that coupling constants and bond lengths are relatable concepts [8, 9, 19]. We have observed that $1J(^{195}Pt, 119Sn)$ values for the compounds *trans*-[PtH(SnCl₃)(PR₃)₂] fall in

0020-1693/83/0000-0000/\$03.00 © Elsevier Sequoia/Printed in Switzerland

TABLE I. Some Relevant Bond Lengths (A) and Bond Angles (°) for sym-trans-[Pt(SnCl₃)(μ -Cl)PEt₃)]₂ [20] (e.s.d.s are given in parentheses).

$Pt(1) - Pt(2)$	3.036(2)	$Pt - CI - Pa$	80.5(3)
$Pt - CI^4$	2.35(1)	$Cl(1)-Pt(1)-Cl(2)$	84.1(2)
$Pt(1) - Sn(1)$	2.487(3)	$Cl(1)-Pt(2)-Cl(2)$	84.6(4)
$Pt(1) - P(1)$	2.20(1)	$Sn(1) - Pt(1) - P(1)$	93.8(3)
$Pt(2) - Sn(2)$	2.478(3)	$Sn(2)-Pt(2)-P(2)$	94.9(3)
$Pt(2)-P(2)$	2.18(1)		
$Sn-Cl^a$	2.32(2)	$Sn(2)-Pt(2)-Cl(2)$	86.4(3)
		$P(2)-Pt(2)-Cl(1)$	94.1(4)
		$Sn(1) - Pt(1) - Cl(1)$	88.5(3)
		$P(1) - Pt(1) - Cl(2)$	94.1(4)
		$Sn(1)-Pt(1)-Pt(2)-Sn(2)$	135.0(8)
		$P(1) - P(t) - P(t) - P(2)$	$-119.2(10)$
		$P(1) - P(t(2) - Cl(2) - Pt(1)$	$-177.3(9)$

a Average value.

TABLE II. Pt-Sn Bond Distances and ${}^{1}J({}^{195}Pt, {}^{119}Sn)$ Values.

Compound	$(Pt-Sn)$, A	119Sn) Hz 1 J $($ ¹⁹⁵ Pt,	
$[PtCl_2(SnCl_3)_2]^{2-a}$	2.356	27640	
$[Pt(SnCl3)(\mu-Cl)(PEt3)]_2$	2.482(3)	35309	
$[PtCl(SnCl3)(PEt3)$ $(PhC(NH2)=NOH)]b$	2.501(1)	32760	
$[PtCl(SnCl3)(DIOP)]c$	2.598	17057	
$[Pt(SnCl3)5]3-d$	2.572(1)	16030	
	2.602(1)	19037	
$[Pt(SnCl3)3(AsMe3)2]-e$ [Pt(SnCl ₃) ₂ (P(OPh) ₃) ₂] ^f	2.601(2)	19043	

 N W. Alcock and J. H. Nelson, submitted for publication *J. Chem. Soc. Dalton, 1982.* **b** Def. 12. ^C Def. 16. d_{Def}. J. Chem. Soc. Dalton, 1982.
13. eRef. 15. fRef. 17.

the range $9067-11,512$ Hz and, consequently, expect that the Pt-Sn lengths will be at the upper end of the observed range.

Experimental

 $Tin(II)$ dichloride $(0.076 \text{ g}, 0.040 \text{ mmol})$ was added to a solution of $[PtCl(\mu-C1)(PEt_3)]_2$ (0.154 g, 0.020 mmol) in 5 ml $CH₂Cl₂$ and the resulting suspension stirred until all of the solid had dissolved. Filtration was followed by careful treatment with pet. ether $(30-60^{\circ})^*$ such that the hydrocarbon forms a layer on the CH_2Cl_2 . Storage at -20° for one week gave 0.216 g (94%) of product as yellow crystals. Calcd. (Found): C, 12.56 (12.75); H, 2.64 (2.55) ; Cl, 24.72 (24.61) .

Acknowledgements

We thank the ETH Zürich and the Swiss National Science Foundation for support for H.R. and K.A.O. S., respectively.

References

- 1 C. U. Pittman Jr., Y. Kawabata and L. I. Flowers, J. C. S. Chem. Comm. (1982) 473; J. Kaspar, R. Spogliarich and M. Graziani, J. *Organomet. Chem., 231, 71* (1982);C. H. Cheng, L. Kuritzkes and R. Eisenberg, J. *Organomet. Chem., 190, C21* (1980); Y. Kawabata, T. Hayashi and I. Ogata, J. C. S. *Chem. Comm.* (1979) 462.
- 2 K. A. Ostoja Starzewski, H. Riiegger and P. S. Pregosin, Inorg. *Chim. Acta, 36,* L 445 (1979).
- 3 M. Kretschmer and P. S. Pregosin, Znorg. *Chim. Acfa, 61, 247* (1982).
- 4 P. S. Pregosin and S. N. Sze, *Helv. Chim. Acta, 61,* 1848 (1978).
- 5 K. H. A. Ostoja Starzewski and P. S. Pregosin, *Angew. Chem. Znt. Ed.* Engl., 19, 316 (1980).
- 6 K. H. A. Ostoja Starzewski, P. S. Pregosin and H. Riiegger, *Helv. Chim. Acta, 65, 785 (1982).*
- *7* K. H. A. Ostoja Starzewski and P. S. Pregosin in 'Catalytic Aspects of Metal Phosphine Complexes', *Advances in Chemistry Series, 196, 23* (1982).
- 8 A. Pidcock, in 'Catalytic Aspects of Metal Phosphine Complexes', *Advances in Chemistry Series,* 196, 1, (1982).
- 9 H. Motschi, C. Nussbaumer and P. S. Pregosin, *Helv. Chim. Acta, 63, 2071* (1980); H. Motschi and P. S. Pregosin, *Inorg. Chim. Acta, 40*, 141 (1980).
- 10 M. Black, R. H. B. Mais and P. G. Owston, *Acta Cryst., B25, 1760* (1969).
- 11 N. M. Boag, J. Browning, C. Cracker, P. L. Goggin, R. J. Goodfellow, M. Murray and J. L. Spencer, J. *Chem. Research(S)* (1978) 228; J. *Chem. Research (M)* (1978) 2962.
- 12 A. B. Croel, S. Croel and D. Vanderveer, *Inorg. Chim. Acta, 54, L5* (1981).
- 13 J. H. Nelson and N. W. Alcock, submitted for publication, *Inorg. Chem.*, 1982.
- 14 M. M. Olmstead, L. S. Benner, H. Hope and A. L. Balch, *Znorg. Chim Acta, 32,* 193 (1979).
- 15 P. S. Pregosin, H. Riiegger, A. Albinati and R. Nigeli, *Angew. Chem., 94, 310* (1982).
- 16 G. Consiglio, P. Pino, M. Scallone, unpublished results, 1982.
- 17 A. Albinati, P. S. Pregosin and H. Riiegger, unpublished results, 1982.
- 18 E. N. Yurchenko, *Abstracts of the XXIIICCC,* Budapest, 1982.
- 19 H. B. Buergi, E. Fischer, R. W. Kunz, M. Parvez and P. S. Pregosin, *Inorg. Chem.*, 21, 1246 (1982).

^{*}Yellow crystals of compound (Ia) suitable for an X-ray analysis were obtained with difficulty from $CH_2Cl_2/petro$ leum ether (30-60") solution, and are stable in the air. Compound (I_0) $(I_1, H_2, P_1, P_2, C_1, M, W_1 = 1147.50$ is monocound (ia) (C₁₂11301 c₂511₂1₂C₁₃, m, m, c = 1147.50) is mono-11.1.1.1.1.43.432(6), p = 12.432(6), p = 10.333(6), p = 13.4433(6), c
(1) $2 + 4$; 232(6), p = 77.9(4), (least squares refined values); 7 = 4; $V = 2032.7(1)$ $V = 7.2(1)$ (teast squares formed values), $Z = 1$,
 $V = 2032.7(1)$ $R^3 = 2.51$ g cm⁻³; $v = 117.2$ cm⁻¹. 4817 independent reflections were collected on a Philips PW 1100 four circle diffractometer using Mo-K $\bar{\alpha}$ graphite monochromour chere unifactometer using mo-Ka graphic monochroni- $\frac{1}{1000}$ furnitude up to $\frac{1}{20}$ max $\frac{1}{2000}$ using an $\frac{1}{20}$ scan teention corrected intensities were considered as observed (having I_{net} > 3 $\sigma(I)$) and used for the structural determination. The structure was solved by the heavy atom method and refined by block diagonal least squares to the present agreement factor of 9.3% for the observed reflections, using anisotropic temperature factors for the Pt, Sn, P, Cl atoms, isotropic for the others.